- D. Linda wants to know the variability explained by the blocking variable experience at the .05 level of significance.
- E. The 5-step approach to hypothesis testing
 - 1. A check of each null hypothesis will be made.
 - a. $H_0: \mu_1 = \mu_2 = \mu_3$ and $H_1: \mu_1 \neq \mu_2 \neq \mu_3$ for the treatment means.
 - b. $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ and $H_1: \mu_1 \neq \mu_2 \neq \mu_3 \neq \mu_4$ for the block means.
 - 2. The level of significance is .05.
 - 3. The test statistic is F.
 - If F from the test statistic is beyond the critical value of F for the .05 level of significance, the null hypothesis will be rejected.
 - 5. Apply the decision rule.

$$SS_T = \sum \left[\frac{(\sum x_T)^2}{b} \right] - \frac{(\sum x)^2}{N}$$
$$= 602 - \frac{84^2}{12}$$
$$= 602 - 588 = 14$$

$$SS_B = \sum \left[\frac{(\sum X_B)^2}{t} \right] - \frac{(\sum X)^2}{N}$$
$$= 599.3 - \frac{84^2}{12}$$
$$= 599.3 - 588 = 11.3$$

$$MS_T = \frac{SS_T}{t-1} = \frac{14}{3-1} = 7.0$$
 $MS_B = \frac{SS_B}{(b-1)} = \frac{11.3}{4-1} = 3.77$

$$SS_{\text{TOTAL}} = \sum x^2 - \frac{(\sum x)^2}{N}$$

= 616 - 588 = 28

$$SS_E = SS_{TOTAL} - (SS_T + SS_B)$$

= 28.0 - (14.0 + 11.3) = 2.7

Unexplained variability is down from 14.0 to 2.7.

$$MS_E = \frac{SS_E}{(t-1)(b-1)} = \frac{2.7}{(3-1)(4-1)} = .45$$

Treatment hypothesis degrees of freedom t - 1 = 3 - 1 = 2 for numerator (t - 1)(b - 1) = (3 - 1)(4 - 1) = 6 for denominator

Reject H₀ because F = $\frac{MS_T}{MS_E} = \frac{7.0}{.45} = 15.56 > 5.14$. Average salesperson sales are not equal.

Block hypothesis degrees of freedom b - 1 = 4 - 1 = 3 for numerator (t - 1)(b - 1) = (3 - 1)(4 - 1) = 6 for denominator F = 4.76 Reject H₀ because F = $\frac{MS_B}{MS_E} = \frac{3.77}{.45} = 8.38 > 4.76$. Average weekly sales are not equal.

III. Comparing three or more treatment sample means for one-factor analysis

- A. Having proven that there is a difference in the average sales of the three treatments (salespeople) in chapter 18, determining whether treatment means differ from each of the other may be of interest.
- B. A range (confidence interval) will be found for the difference between 2 treatment means. A positive range for the difference of these means will indicate the difference could not be zero and the means are different.
- C. The t value for α/2 will be used.

F = 5.14

$$(\bar{x}_3 - \bar{x}_1) \pm t \sqrt{MS_E(\frac{1}{n_1} + \frac{1}{n_2})}$$

D. We will determine whether average sales for the first and third salesperson are different at the .05 level of significance.

Salespersons #1 and #3 Average Sales

(Data from page 109)

The number of observations within each treatment is n_1 and n_2 .

$$\bar{X}_1 = \frac{\sum x}{n_1} = \frac{24}{4} = 6.0$$

$$\bar{X}_3 = \frac{\sum x}{n_3} = \frac{34}{4} = 8.5$$

t for $\alpha/2$ and N - t degrees of freedom is 12 - 3 = 9 \rightarrow t = 2.262 MS_F from page 109 is 1.56.

$$(\overline{x}_3 - \overline{x}_1) \pm t \sqrt{MS_E(\frac{1}{n_1} + \frac{1}{n_2})}$$

 $(8.5 - 6.0) \pm 2.262 \sqrt{1.56(\frac{1}{4} + \frac{1}{4})}$
 $2.5 \pm 2.262 \sqrt{.78}$
 2.5 ± 2.0

A positive range of $.5 \leftrightarrow 4.5$ indicates the means are different.